pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration
Last Updated
2026年1月21日

PyTorch is a Python package that provides two high-level features:
- Tensor computation (like NumPy) with strong GPU acceleration
- Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.
Our trunk health (Continuous Integration signals) can be found at hud.pytorch.org.
- More About PyTorch
- Installation
- Getting Started
- Resources
- Communication
- Releases and Contributing
- The Team
- License
More About PyTorch
At a granular level, PyTorch is a library that consists of the following components:
| Component | Description |
|---|---|
| torch | A Tensor library like NumPy, with strong GPU support |
| torch.autograd | A tape-based automatic differentiation library that supports all differentiable Tensor operations in torch |
| torch.jit | A compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code |
| torch.nn | A neural networks library deeply integrated with autograd designed for maximum flexibility |
| torch.multiprocessing | Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training |
| torch.utils | DataLoader and other utility functions for convenience |
Usually, PyTorch is used either as:
- A replacement for NumPy to use the power of GPUs.
- A deep learning research platform that provides maximum flexibility and speed.
Elaborating Further:
A GPU-Ready Tensor Library
If you use NumPy, then you have used Tensors (a.k.a. ndarray).

PyTorch provides Tensors that can live either on the CPU or the GPU and accelerates the
computation by a huge amount.
We provide a wide variety of tensor routines to accelerate and fit your scientific computation needs
such as slicing, indexing, mathematical operations, linear algebra, reductions.
And they are fast!
Dynamic Neural Networks: Tape-Based Autograd
PyTorch has a unique way of building neural networks: using and replaying a tape recorder.
Most frameworks such as TensorFlow, Theano, Caffe, and CNTK have a static view of the world.
One has to build a neural network and reuse the same structure again and again.
Changing the way the network behaves means that one has to start from scratch.
With PyTorch, we use a technique called reverse-mode auto-differentiation, which allows you to
change the way your network behaves arbitrarily with zero lag or overhead. Our inspiration comes
from several research papers on this topic, as well as current and past work such as
torch-autograd,
autograd,
Chainer, etc.
While this technique is not unique to PyTorch, it's one of the fastest implementations of it to date.
You get the best of speed and flexibility for your cr